
LyricsScraping
Release 0.1

Raul C.

Aug 03, 2020

CONTENTS

1 README [Work-in-Progress] 1
1.1 Dependencies . 1
1.2 Installation instructions . 1
1.3 Usage . 2

2 API Reference 3
2.1 lyrics_scraping.scrapers . 3
2.2 lyrics_scraping.scripts . 8
2.3 lyrics_scraping.utils . 8

3 Indices and tables 11

Python Module Index 13

Index 15

i

ii

CHAPTER

ONE

README [WORK-IN-PROGRESS]

LyricsScraping crawls and scraps lyrics from AZLyrics.

• Dependencies

• Installation instructions

• Usage

– Run the main script

– Use the library in your own code

1.1 Dependencies

• Platforms: macOS, Linux, Windows

• Python: 3.5, 3.6, 3.7

• BeautifulSoup : used for crawling and parsing the lyrics webpages

• requests : used for requesting the HTML content of lyrics webpages

• yaml : used for reading configuration files (e.g. logging)

• py-common-utils : is a Python collection of utilities with useful functions and modules ready to be used in
different projects. For instance, you will find code related to databases and logging.

1.2 Installation instructions

1. Download the LyicsScraping and py-common-utils libraries

2. . . .

1

https://lyricsscraping.readthedocs.io/en/latest/?badge=latest
https://travis-ci.org/raul23/LyricsScraping
https://github.com/raul23/LyricsScraping
https://github.com/raul23/py-common-utils

LyricsScraping, Release 0.1

1.3 Usage

These are the two ways to use the lyrics-scraping package:

1. Run the scraper script

2. Use the library as API in your own code

1.3.1 Run the main script

Run the script with:

$ python run_scraper.py -c

Note:

• The option -c is for adding color to log messages.

1.3.2 Use the library in your own code

2 Chapter 1. README [Work-in-Progress]

CHAPTER

TWO

API REFERENCE

• lyrics_scraping.scrapers

– scrapers.lyrics_scraper

– scrapers.azlyrics_scraper

– scrapers.exceptions

• lyrics_scraping.scripts

– scripts.scraper

• lyrics_scraping.utils

– Description

– Functions

2.1 lyrics_scraping.scrapers

lyrics_scraping.scrapers is a package that contains modules that define scrapers for specific lyrics websites,
e.g. azlyrics_scraper.

2.1.1 scrapers.lyrics_scraper

Description

Module that defines the base class for scraping lyrics websites and saving the scraped content.

More specifically, the derived classes (e.g. AZLyricsScraper) are the ones that do the actual scraping of the lyrics
webpages.

By default, the scraped data is saved in a dictionary (see the variable scraped_data).

The scraped data can also be saved in a database if a path to the SQLite database is given via the argument db_filepath.

See the structure of the music database as defined in the music.sql schema.

3

https://bit.ly/2kIMYvn

LyricsScraping, Release 0.1

Class and methods

class scrapers.lyrics_scraper.Album(album_title, artist_name, album_url, year)
Bases: object

TODO

static check_album_year(year_result)
TODO

Parameters year_result (list) – TODO

class scrapers.lyrics_scraper.Artist(song_title, artist_name, artist_url)
Bases: object

TODO

class scrapers.lyrics_scraper.ComputeCache(schema_filepath, ram_size)
Bases: object

TODO

class scrapers.lyrics_scraper.Lyrics(song_title, artist_name, album_title, lyrics_url,
lyrics_text, year)

Bases: object

TODO: remove, to be replaced by Song

class scrapers.lyrics_scraper.LyricsScraper(db_filepath='', overwrite_db=False,
use_webcache=True, web-
cache_dirpath='~/.cache/lyric_scraping/',
expire_after=25920000,
use_compute_cache=True,
ram_size=100, http_get_timeout=5,
delay_between_requests=8, head-
ers=pyutils.webcache.WebCache.HEADERS,
seed=123456, interactive=False, de-
lay_interactive=30, best_match=False,
simulate=False, ignore_errors=False)

Bases: object

Base class for scraping and saving webpages locally.

This class is responsible for doing lots of configuration before the web scraping starts, such as setting up logging
and the database.

The actual scraping of the lyrics websites is done by the derived classes (e.g. AZLyricsScraper) since each
lyrics websites have their own way of being crawled (they are all designed differently). However, the base class
is responsible for saving the scraped data in a dictionary (scraped_data) and in a database (if it was initially
make configured).

Parameters

• lyrics_urls (list [str]) – List of URLs to lyrics webpages which will be scraped.

• db_filepath (str, optional) – File path to the SQLite music database (the default
value is None which implies that no database will be used. The scraped data will be saved
only in the scraped_data dictionary).

• autocommit (bool, optional) – Whether the changes to the database are committed
right away (the default is False which implies that the changes won’t take effect immedi-
ately).

4 Chapter 2. API Reference

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool

LyricsScraping, Release 0.1

• overwrite_db (bool, optional) – Whether the database will be overwritten. The
user is given some time to stop the script before the database is overwritten (the default value
is False).

• update_tables (bool, optional) – Whether the tables in the database can be up-
dated (the default value is False).

• cache_dirpath (str, optional) – Path to the cache directory where webpages are
saved (the default value is None which implies that the cache will not be used).

• overwrite_webpages (bool, optional) – Whether the webpages saved in cache
can be overwritten (the default value is False).

• http_get_timeout (int, optional) – Timeout when a GET request doesn’t re-
ceive any response from the server. After the timeout expires, the GET request is dropped
(the default value is 5 seconds).

• delay_between_requests (int, optional) – A delay will be added between
HTTP requests in order to reduce the workload on the server (the default value is 8 seconds
which implies that there will be a delay of 8 seconds between successive HTTP requests).

• headers (dict, optional) – The information added to the HTTP GET request that
a user’s browser sends to a Web server containing the details of what the browser wants
and will accept back from the server. (the default value is defined in saveutils.
SaveWebpages.headers).

• use_logging (bool, optional) – Whether to log messages on console and file. The
logging is setup according to the YAML logging file (the default value is False which implies
that no logging will be used and thus no messages will be printed on the console).

• **kwargs (dict) – TODO

Variables

• skipped_urls (dict [str, str]) – Stores the URLs that were skipped because of
an error such as OSError or HTTP404Error, along with the error message. The keys
are the URLs and the values are the associated error messages.

• good_urls (set) – Stores the unique URLs that were successfully processed and saved.

• checked_urls (set) – Stores the unique URLs that were processed (whether success-
fully or unsuccessfully) during the current session. Thus, checked_urls should equal to
skipped_urls + good_urls.

• db_conn (sqlite3.Connection) – SQLite database connection.

• saver (saveutils.SaveWebpages) – For retrieving webpages and saving them in
cache. See saveutils.

• valid_domains (list) – Only URLs from these domains will be processed.

• logging_filepath (str) – Path to the YAML logging file which is used to setup
logging for all custom modules.

• schema_filepath (str) – Path to music.sql schema for building the music database
which will store the scraped data.

• scraped_data (dict) – The scraped data is saved as a dictionary. Its structure is based
on the database’s music.sql schema.

2.1. lyrics_scraping.scrapers 5

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://www.webopedia.com/TERM/H/HTTP_request_header.html
https://py-common-utils.readthedocs.io/en/latest/api_reference.html#saveutils.SaveWebpages.headers
https://py-common-utils.readthedocs.io/en/latest/api_reference.html#saveutils.SaveWebpages.headers
https://docs.python.org/3/library/functions.html#bool
https://bit.ly/2m5wjSM
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#OSError
https://py-common-utils.readthedocs.io/en/latest/api_reference.html#exceptions.connection.HTTP404Error
https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/sqlite3.html#sqlite3.Connection
https://py-common-utils.readthedocs.io/en/latest/api_reference.html#saveutils.SaveWebpages
https://py-common-utils.readthedocs.io/en/latest/api_reference.html#module-saveutils
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://bit.ly/2m5wjSM
https://docs.python.org/3/library/stdtypes.html#str
https://bit.ly/2kIMYvn
https://docs.python.org/3/library/stdtypes.html#dict
https://bit.ly/2kIMYvn

LyricsScraping, Release 0.1

Notes

If the corresponding flags are activated, logging and database are setup in __init__().

By default, the scraped data is saved in a dictionary whose structure is described below (see scraped_data).
The scraped data will also be saved if a database is given via db_filepath.

See the structure of the music database as defined in the music.sql schema.

The scraped webpages can also be cached in order to reduce the number of HTTP requests to the server (See
db_filepath).

get_lyrics_from_album(album_title, artist_name=None, max_songs=None)
TODO

Parameters

• album_title –

• artist_name –

• max_songs –

get_lyrics_from_artist(artist_name, max_songs=None, year_after=None,
year_before=None)

TODO

Parameters

• artist_name –

• max_songs –

• year_after –

• year_before –

get_scraped_data()
Return the scraped data as a dictionary.

This method returns all the data that was scraped from the lyrics webpages. If a database was used, the
scraped data is also saved in the SQLite database file found at db_filepath

See scraped_data for a detailed structure of the returned dictionary.

Returns scraped_data – The scraped data whose content is described in scraped_data.

Return type dict

get_song_lyrics(song_title, artist_name=None)
TODO

Parameters

• song_title –

• artist_name –

scraped_data = {'albums': {'data': [], 'headers': ('album_title', 'artist_name', 'year')}, 'artists': {'data': [], 'headers': ('artist_name',)}, 'songs': {'data': [], 'headers': ('song_title', 'artist_name', 'album_title', 'lyrics_url', 'lyrics', 'year')}}
The scraped data is saved as a dictionary.

Its keys and values are defined as follow:

scraped_data = {
'albums': {

'headers': ('album_title', 'artist_name', 'year',),

(continues on next page)

6 Chapter 2. API Reference

https://bit.ly/2kIMYvn
https://docs.python.org/3/library/stdtypes.html#dict

LyricsScraping, Release 0.1

(continued from previous page)

'data': []
},
'artists': {

'headers': ('artist_name',),
'data': []

},
'songs': {

'headers': ('song_title', 'artist_name', 'album_title',
'lyrics_url', 'lyrics', 'year',),

'data': []
}

}

Note: The ‘data’ key points to a list of tuple that eventually will store the scraped data from different
URLs, i.e. each scraped data from a given URL is added as a tuple to the list.

search_album(album_title, artist_name=None)
TODO

Parameters

• album_title –

• artist_name –

search_artist(artist_name=None)
TODO

Parameters artist_name –

search_song_lyrics(song_title, artist_name=None)
TODO

Parameters

• song_title –

• artist_name –

start_scraping()
Start the web scraping of lyrics websites.

This method iterates through each lyrics URL from the main config file and delegates the important tasks
(URL processing and scraping) to separate methods (_process_url() and _scrape_webpage()).

Notes

This method catches all exceptions that prevent a given URL of being processed further, e.g. the webpage
is not found (404 Error) or the URL is not from a valid domain.

Any exception that is not caught here is redirected to the main script calling this method. See for example
the main script scripts.scraper.

valid_domains = ['www.azlyrics.com']

class scrapers.lyrics_scraper.Song(song_title, artist_name, album_title, lyrics_url, lyrics_text,
year)

Bases: object

2.1. lyrics_scraping.scrapers 7

https://docs.python.org/3/library/functions.html#object

LyricsScraping, Release 0.1

TODO

2.1.2 scrapers.azlyrics_scraper

2.1.3 scrapers.exceptions

2.2 lyrics_scraping.scripts

lyrics_scraping.scrapers is a package that contains modules that define scripts, e.g. scripts.scraper.

2.2.1 scripts.scraper

2.3 lyrics_scraping.utils

2.3.1 Description

Collection of utilities specifically for the lyrics scraping project.

2.3.2 Functions

utils.dump_cfg(filepath, cfg_dict)
TODO

Parameters

• filepath –

• cfg_dict –

utils.get_backup_cfg_filepath(cfg_type)
TODO

Parameters cfg_type –

utils.get_data_dirpath()
TODO

utils.get_data_filepath(file_type)
Return the path to a data file used by lyrics_scraping.

The data file can either be the:

• default_log: refers to the default logging configuration file used to setup the logging for all custom mod-
ules.

• default_main: refers to the default main configuration file used to setup a lyrics scraper.

• log: refers to the user-defined logging configuration file which is used to setup the logging for all custom
modules.

• main: refers to the user-defined main configuration file used to setup a lyrics scraper.

• schema: refers to the SQL schema file music.sql used for creating the SQLite database which stores the
scraped data.

8 Chapter 2. API Reference

https://bit.ly/2oPJSr4
https://bit.ly/2n764MV
https://bit.ly/2niTDgY
https://bit.ly/2oyt0VJ
https://bit.ly/2kIMYvn

LyricsScraping, Release 0.1

Parameters file_type (str, {'default_log', 'default_main', 'log',
'main', 'schema'}) – The type of data file for which we want the path.

Returns filepath – The path to the data file.

Return type str

Raises AssertionError – Raised if the wrong type of data file is given to the function. Only
{‘default_log’, ‘default_main’, ‘log’, ‘main’, ‘schema’} are accepted for file_type.

utils.load_cfg(cfg_type)
TODO

Parameters cfg_type –

utils.plural(obj, plural_end='s', singular_end='')
Add plural ending if a number is greater than 1 or there are many values in a list.

If the number is greater than one or more than one item is found in the list, the function returns by default ‘s’. If
not, then the empty string is returned.

Parameters

• obj (int, float or list) – The number or list that will be checked if a plural or
singular ending will be returned.

• plural_end (str, optional) – The plural ending (the default value is “s” which
implies that “s’” will be returned in the case that the number is greater than 1 or the list
contains more than one item).

• singular_end (str, optional) – The singular ending (the default value is “” which
implies that an empty string will be returned in the case that the number is 1 or less, or the
list contains 1 item).

Returns str – “s” if number is greater than 1 or more than one item is found in the list, “” (empty
string) otherwise.

Return type “s” or “”

Raises TypeError – TODO

2.3. lyrics_scraping.utils 9

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#AssertionError
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#TypeError

LyricsScraping, Release 0.1

10 Chapter 2. API Reference

CHAPTER

THREE

INDICES AND TABLES

• genindex

• modindex

• search

11

LyricsScraping, Release 0.1

12 Chapter 3. Indices and tables

PYTHON MODULE INDEX

s
scrapers.lyrics_scraper, 3

u
utils, 8

13

LyricsScraping, Release 0.1

14 Python Module Index

INDEX

A
Album (class in scrapers.lyrics_scraper), 4
Artist (class in scrapers.lyrics_scraper), 4

C
check_album_year() (scrap-

ers.lyrics_scraper.Album static method),
4

ComputeCache (class in scrapers.lyrics_scraper), 4

D
dump_cfg() (in module utils), 8

G
get_backup_cfg_filepath() (in module utils), 8
get_data_dirpath() (in module utils), 8
get_data_filepath() (in module utils), 8
get_lyrics_from_album() (scrap-

ers.lyrics_scraper.LyricsScraper method),
6

get_lyrics_from_artist() (scrap-
ers.lyrics_scraper.LyricsScraper method),
6

get_scraped_data() (scrap-
ers.lyrics_scraper.LyricsScraper method),
6

get_song_lyrics() (scrap-
ers.lyrics_scraper.LyricsScraper method),
6

L
load_cfg() (in module utils), 9
Lyrics (class in scrapers.lyrics_scraper), 4
LyricsScraper (class in scrapers.lyrics_scraper), 4

M
module

scrapers.lyrics_scraper, 3
utils, 8

P
plural() (in module utils), 9

S
scraped_data (scrapers.lyrics_scraper.LyricsScraper

attribute), 6
scrapers.lyrics_scraper

module, 3
search_album() (scrap-

ers.lyrics_scraper.LyricsScraper method),
7

search_artist() (scrap-
ers.lyrics_scraper.LyricsScraper method),
7

search_song_lyrics() (scrap-
ers.lyrics_scraper.LyricsScraper method),
7

Song (class in scrapers.lyrics_scraper), 7
start_scraping() (scrap-

ers.lyrics_scraper.LyricsScraper method),
7

U
utils

module, 8

V
valid_domains (scrap-

ers.lyrics_scraper.LyricsScraper attribute),
7

15

	README [Work-in-Progress]
	Dependencies
	Installation instructions
	Usage

	API Reference
	lyrics_scraping.scrapers
	lyrics_scraping.scripts
	lyrics_scraping.utils

	Indices and tables
	Python Module Index
	Index

